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and j = v:l. The lower limit is 0 rather than -00 in this case because Z represents

power and therefore is non-negative.

Assuming the {Zj} are independent and identically-distributed (LLd.), (A-2) and (A-9)

yield:

(A-lO)

Taking the expectation over J using (A-l) gives:

(A-H)

Thus, Z has a compound Poisson distribution.* Letting J,I =2/" (A-4) gives the

characteristic function of Zj as:

00 00

(A-12)

The "second characteristic function" of ZK is defined as the natural logarithm of the

characteristic function.tHence,

* See William Feller, An Introduction to Probability Theory and Its Applications, second ed., vol. IT,
New York: Wiley, 1971.

t See A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill,
1965.
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00

Integrating by parts gives and recalling that Z = lim ZK gives:*
K-+oo

00

= -I w IVf(1_v)e- jwvj2 , w~O

= -I wi Vr(1_v)e jwvj2 , w < 0,

where r(·) is the Gamma function.t

(A-13)

(A-14)

* See also Tables ofIntegral Transfonns, A. Erdelyi, et al, vol. 1, New York: McGraw-Hill, 1954, p. 10
§13, #1, and p. 68 §23 #1.

t See Abramowitz and Stegun, 0p. cit., chapter 6.
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C. The PDF and CDF of the Aggregate Interference

The pdf of Z is given by the Fourier inversion formula:

00 00

fz(z) = -lf~z(w)e-jWZdw = -lfeW(W)e-jWZdw
27r 27r

-00 -00

(A-15)

Letting x 4 -r(1-1I)e- jlrll/2 =r(1_1I)e jlr (1-1I/2), \lIz(w) =wllx for w~O and \liz =-wllx·

for w < 0 (wherex· denotes the complex conjugate ofx), and (A-15) becomes:

00 00

(A-16)

00 00

The integrals f wklle-jwzdw and f wklle jwzdw can be evaluated using a form of Euler's
o 0

integral formula for the Gamma function*

00

r(y) = efwY-le-wedw, Re{y} >0, Re{E} >0,
o

• Abramowitz and Stegun, op. cit., p. 255.

(A-17)
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where Re{'} denotes the real part of the complex argument and the condition on eis

necessary to assure convergence of the integral.

Letting e= z - j e, where z and e are real and positive, (A-17) gives:

00 00

= r(kv + 1) _ r(kv + 1)
(jztll +1 - zkll+1 e-jtr(kII+1)/2' z>O,

and

(A-18a)

00 00

= r(kv + 1) _ r(kv + 1)
(_ jz)k11 + 1 - Zkll + 1 ejtr(kll + 1)/2 ' Z > 0 ,

Eq. (A-16) then becomes:

00

fz(z) = -l E r(kv + 1) [xke- j7r (kll + 1)/2 + (x*t ej7r(kll + 1)/2]
211" k =0 k !Zkll + 1

00

= 1- E r(kv + 1)[r(1-v)t cos[k1r(1-v/2) -1I"(kv + 1)/2]
1I"k=0 k!zkll+1

00

- 1 " r(kv + 1)[r(1-v)t . k (1) 0
--LJ k 1 sm 11" -1.1, z> .

11" k =0 k! z II +

(A-18b)

(A-19)
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The argument of the sum vanishes for k = 0, and (A-19) can be written as:-

00 k

fz(z) = -l. E r(k~~ 1) [r(I-V)] sink7r(I-v) , z > O.
1lZ k=l • ZV

The CDF is then:

(A-20)

00 00 ]k1 r kv r 1-£1 .
Fz(z) = l-!fz(€)d€ = l--E (,) [( ) smk7r(I-v),z >0.(A-21)

7rk=l k. ZV
z

Note that for z» 1, the first term in the series dominates. Since

r(v)r(l-v) =7rcsC7r(I-v)t Fz(z)~I-z-V forz» 1.

D. Closed-Form Expressions for Fourth-Power Propagation

For the special case of 1 = 4 (v = 1/2), (A-20) and (A-21) can be reduced to closed

form.t Since sink7r/2 vanishes for even values of k, and r(1/2) =..;;, (A-20) becomes:

00

fz(z) = _1_ E r(k + 3/2)7r
k

+ 1/2 (-1/, 1 = 4, z > o.
1lZ3/ 2 k =0 (2k + I)! zk

(A-22)

* Expressions equivalent to (A-20) and (A-21) are given by E. S. Sousa and J. A Silvester in
"Optimum Transmission Ranges in a Direct-Sequence Spread-Spectrum Multihop Packet Radio
Network," IEEE Journal on SelectedAreas in Communications, vol. 8, no. 5, June 1990, pp. 762-TI1.
However, the expression given in that paper for the CDP is incorrect and actually represents the
complementary distribution.

t Abramowitz and Stegun, op. cit., p. 256, 6.1.17.
t This also is noted by Sousa and Silvester (op. cit.).
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With the identity:*

r[2(k + 1~ = r(k + 1) r(k + 3/2)z1k +3/2 ,
1 V2;

and the fact that r[2(k + 1)] = r(2k + 2) = (2k + 1)! (A-23) yields:

r(k + 3/2) 0i; = v:;
(2k + 1)! - k! 21k + 3/2 2· k! ·4k '

and (A-22) is seen to be:

00

z - 1 E (-1r/4zt
fz()- 2z-3/2k=O k!

_ 1 -3/2 --/4z 4- -z en,.., = .2 ' ,

In a similar manner, (A-21) reduces for I = 4 to:

(A-23)

(A-24)

(A-25)

00

F (z) = 1-1. E r(k + 1/2) .;c + 1/2 (1)k ,.., =4, z > o. (A-26)
Z 1rk=O (2k + 1)! zk+l/2 - , ,

With the identity:t

* Abramowitz and Stegun, op. cit., p. 256, 6.1.18.

t Id.
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_ r(k) r(k + 1/2)22k - 1/ 2

r(2k) - . r=- '
v 21C"

and with (2k + 1)! =(2k -1)! . (2k + 1)' 2k, and r(2k) =(2K -I)!,

r(k + 1/2) = '2'/;
(2k + 1)! k! (2k + 1)22k + 1 .

Substituting (A-28) into (A-26) yields:

00

2 71' + 1/2
FZIZ) = 1- - E (_1)k" v:; k =0 k! (2k + l)zk + 1/2

00 (.. r- ",-[;1 2k + 1
2 v 1r / ... " Z J

= 1-- E (-Ifv:; k=O k! (2k + 1)

=eric[;;:). ~ =4 •

where erfc(·) is the complementary error function* defined as

00

erfc(x) ~ )-; fe-e2 de = 1-erf(x) ,
1r x

* Abramowitz and Stegun, op. cit., chapter 7.

(A-27)

(A-28)

(A-29)

(A-30a)
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and erf(x) is the error function

x 00

~f -e2 _ ~ x'lk + 1 (-1t
erf(x) ~ V; e de - V;k~O k! (2k + 1)

o

E. Expressions for the Blocking Probability

From (A-8) and (A-21), the blocking probability is:

00

(A-30b)

(A-31)

Asnotedpreviously,Fz~1-z-2h forz» 1. Hence,from(A-8),Pb(a)~afora« 1.

For"Y = 4, (A-8) and (A-29) give:

Pb(a) = erf[~) for') = 4.

F. The Single-Interferer Case

(A-32)

In the context of this mode~ the blocking probability for the "single-interferer" case is

easily derived by recalling that the average interference source density is 1/1r active

transmitters per unit area, and the normalized interference power from a source a

distance s from the receiver is s -'Y. Since the number of active transmitters within

(normalized) distance s of the receiver is a Poisson-distributed random variable with

mean value s 2, the probability that there are no active transmitters within that

distance of the receiver is e-
s2

• Thus, since the normalized interference from a single

source at distance s is Z = s-', the P {Z < z} for the "single-interferer" case is equal to

the probability that there are no interfering transmitters within distance s = z-lh of

the receiver. Hence, for the "single interferer" case,
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Fz(z) = exp( _z-2h ) , z ~O, (A-33)

and from (A-8), the blocking probability for the single-interference case at the edge of

the service area is:

(A-34)

Fig. A-I shows Fz(z) for "y = 3.0, 3.5, and 4.0, for both the multiple-interferer and

single-interferer cases, and the blocking probability is shown in Fig. 6 in the body of

this paper.
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Figure A-I. The CDF ofthe normalized aggregate interfereru:e power.


